Where Do We Go From Here? (Action Plan/Implementation)

To advance RWCMoves’ transportation program, the City will need to take several implementation actions. These include General Plan Amendments to align the City’s General Plan policies and programs with those identified for RWCMoves. They also include identifying a funding strategy to ensure that the City’s vision for its transportation future come to fruition. Within the implementation plan is a recognition that transportation projects, technologies, and funding sources will change over time, and thus the plan should be updated every two to three years to allow the plan to evolve as the City grows.

Modified General Plan Policies and Programs

Redwood City’s General Plan lays the groundwork for the Citywide Transportation Plan and generally includes policies and programs that support the vision and goals of RWCMoves. However, some updates to the General Plan will likely be necessary to ensure complete consistency with RWCMoves. Table 4 below, describes the primary General Plan transportation policies that should be amended as part of RWCMoves to further support its transportation goals. While Table 5 highlights major policies that should be revised, a careful review of all General Plan policies should also be conducted to incorporate any minor edits to fine-tune the policies in the General Plan.
Table 4: Recommended General Plan Policy Amendments

<table>
<thead>
<tr>
<th>2010 General Plan</th>
<th>Proposed Amendment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy Number</td>
<td>Policy Text</td>
</tr>
<tr>
<td>BE-25.3</td>
<td>Support using the concept of complete streets to design, construct, operate, and maintain City and private streets to enable safe, comfortable, and attractive access and travel for pedestrians, bicyclists, motorists, and transit users of all ages, abilities, and preferences.</td>
</tr>
<tr>
<td>BE-26.2</td>
<td>Develop and maintain comprehensive master plans for the citywide bicycle and pedestrian networks to identify short- and long-range policies, programs, and improvement projects that will improve walking and bicycling.</td>
</tr>
<tr>
<td>BE-26.11</td>
<td>Prioritize implementation of pedestrian and bicycle improvements near schools, transit, shopping, hospitals, and mixed-use areas with higher pedestrian concentrations.</td>
</tr>
<tr>
<td>BE 29.5</td>
<td>Support re-evaluation of the City’s Level of Service (LOS) policies for motor vehicle circulation to ensure efficient traffic flow and balance multi-modal mobility goals.</td>
</tr>
<tr>
<td>BE 29.6</td>
<td>Develop a new Level of Service (LOS) policy for Downtown that includes the following components: - Emphasis on pedestrian and bicycle access and circulation - Maintenance of appropriate emergency vehicle access and response time - Support for reduced vehicle miles traveled - Considers, but does not deem, auto congestion Downtown to be an impact</td>
</tr>
<tr>
<td>BE 29.NEW</td>
<td>N/A - New Policy to support General Plan and RWCMoves policies.</td>
</tr>
<tr>
<td>BE-31.4</td>
<td>Support implementation of a citywide or areawide TDM program.</td>
</tr>
</tbody>
</table>

In addition to the policies, the City’s General Plan includes a number of implementing programs to support its policies. Several of the programs would also need to be amended, and new ones would need to be adopted, as part of RWCMoves implementation. The proposed amended and added programs are outlined in Table 5. As with General Plan policies, a careful review of all existing General Plan programs should be conducted to incorporate any minor edits to fine-tune the General Plan’s programs.
Table 5: Recommended General Plan Implementation Program Amendments

<table>
<thead>
<tr>
<th>2010 General Plan</th>
<th>Program Text</th>
<th>Proposed Amendment</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE-39</td>
<td>Transportation Funding Prioritization. Develop an overall policy to prioritize funding and timing for implementing transportation improvements. Consider prioritizing multimodal projects that provide the most benefit to all users. Also, account for other potential funding sources where feasible.</td>
<td>Transportation Funding Prioritization. Develop an overall policy to prioritize funding and timing for implementing transportation improvements. Consider prioritizing multimodal projects that provide the most benefit to all users. Also, account for other potential funding sources where feasible.</td>
</tr>
</tbody>
</table>
| **BE-55** | **Level of Service Policy Evaluation.** Evaluate Redwood City’s current Level of Service (LOS) policies for motor vehicle circulation. The evaluation shall consider the following to ensure efficient traffic flow and balance multimodal mobility goals:
- Maintaining LOS D or better for motor vehicles in all areas of the City, except the Downtown area as defined by the Downtown Precise Plan. In Downtown, no minimum vehicular LOS standard will be maintained but vehicular LOS will be calculated and alternate LOS standards for other travel modes will be established.
- Explore other areas of the City where vehicular LOS standard would either be lowered or eliminated. These areas may include gateway intersections providing access into the City, freeway ramps, or along Transit streets including the proposed streetcar corridors.
- Consider the effect of potential mitigation measures to improve vehicle LOS on the operations of other travel modes.
- Evaluate the potential for elimination of vehicle LOS as the primary measure of impact assessment for developments in parts or the entire City. | **Level of Service Policy Evaluation.** Evaluate Redwood City’s current Level of Service (LOS) policies for motor vehicle circulation. The evaluation shall consider the following to ensure efficient traffic flow and balance multimodal mobility goals:
- Maintaining LOS D or better for motor vehicles in all areas of the City, except the Downtown area as defined by the Downtown Precise Plan. In Downtown, no minimum vehicular LOS standard will be maintained but vehicular LOS will be calculated and alternate LOS standards for other travel modes will be established.
- Explore other areas of the City where vehicular LOS standard would either be lowered or eliminated. These areas may include gateway intersections providing access into the City, freeway ramps, or along Transit streets including the proposed streetcar corridors.
- Consider the effect of potential mitigation measures to improve vehicle LOS on the operations of other travel modes.
- Evaluate the potential for elimination of vehicle LOS as the primary measure of impact assessment for developments in parts or the entire City. |
| **New-1** | N/A - New Program to support General Plan and RWCmoves policies. | **Vision Zero.** Adopt a Vision Zero policy and create a Vision Zero Plan to develop a framework to reduce collisions in Redwood City. |
| **New-2** | N/A - New Program to support General Plan and RWCmoves policies. | **Curbside Management.** Develop and implement curbside management strategies to allow for efficient and safe use of TNCs and other on-demand transit services. |
| **New-3** | N/A - New Program to support General Plan and RWCmoves policies. | **On-Demand Transit Service Pilot Program.** Develop and implement an on-demand responsive pilot program with service provided by a TNC vendor. |
| **New-4** | N/A - New Program to support General Plan and RWCmoves policies. | **Automated Vehicle Management.** Develop and implement automated vehicle management strategies to allow and accommodate for automated vehicle technology in ways that provide a net benefit to the public. |
| **New-5** | N/A - New Program to support General Plan and RWCmoves policies. | **Electric Vehicle Encouragement.** Develop and implement electric vehicle (EV) encouragement programs that educate and incentivize and support use of EVs. |
| **New-6** | N/A - New Program to support General Plan and RWCmoves policies. | **Robot/Drone Delivery.** Develop and implement robot and drone delivery management strategies to allow and accommodate for automated delivery technologies in ways that provide a net benefit to the public. |
Street Typologies and Transportation Engineering Standards and Design Guidelines

This section provides an update to Redwood City’s street typologies and recommends modifications to the City’s engineering standards to align with current best practices.

Proposed Street Typology Updates

To ensure a balanced, multi-modal transportation network, the Redwood City General Plan organizes streets and other transportation facilities according to typologies that consider the context and prioritize different travel modes for each street. The following updated street typologies are identified for the City as part of RWCMoves. These updated typologies build upon those identified in the current General Plan, but incorporate elements of the National Association of City Transportation Officials’ (NACTO) Urban Street Design Guide, which are based on the principle that streets are public spaces for people as well as roadways for traffic and transportation.
Boulevard

Boulevards are major roadways that typically have four to six travel lanes and accommodate larger vehicle volumes, while providing wide sidewalks and dedicated bike facilities (such as bike lanes and cycle tracks). Creating an inviting corridor for all roadway users, helps to encourage development and increases commercial activity along corridors originally solely developed for cars. These streets serve as primary routes to destinations within the community or beyond the City. As such, Boulevards are focused on ensuring person throughput, not only for cars and trucks, but also for pedestrians and bicyclists.

Design elements may include:

- Enhanced bike lanes or cycle tracks, including the use of green paint at potential conflict points
- Using lane striping and narrow lane widths to create the illusion of a more compact corridor, thereby reducing vehicle speeds, collision severity, and increasing safety for all users
- Refuge islands and curb bulbs to reduce crossing distance for people walking and biking
- Raised sidewalks and curb bulbs at crossings of frontage roads
- Speed limits are typically 35mph to maintain vehicle throughput
- Transit priority signal and other features

Example Boulevards include El Camino Real, Veterans Boulevard, and Woodside Road.
Connector

This versatile street type is true multi-purpose right-of-way designed to move vehicles while providing good access for people biking and walking. Connectors generally have two to three travel lanes and provide on-street bicycle facilities or on-street parking, in addition to sidewalks. As right-of-way permits, Connectors may have four travel lanes and/or provide both on-street parking and on-street bicycle facilities. They provide connections to Boulevards or other major through routes in the City.

Design elements may include:

- Accommodations for a wide variety of vehicles
- Using lane striping and narrow lane widths to create the illusion of a more compact corridor, thereby reducing vehicle speeds, collision severity, and increasing safety for all users
- Transit signaling
- Speed limits not to exceed 30mph for safety of people walking and biking
- Landscaping and other street enhancements
Neighborhood Main Street (Downtown Streets)

Neighborhood Main Streets are where transportation related to commerce and higher density housing converge into a single corridor where people do business, live, and interact with each other. These streets are typically not used as through routes, but rather serve as destination corridors, with lower traffic speeds, higher pedestrian and bicycle volumes, and frequent turnover of on-street parking. Neighborhood Main Streets have narrower cross-sections that accommodate wider sidewalks and reduced travel lanes (typically two to three travel lanes). Design is focused on providing pedestrian and bicycle access from nearby parking lots/garages and transit centers to the land uses along Neighborhood Main Streets through dedicated facilities, reduced crossing distances, and traffic calming.

Design elements may include:

- Time-limited and/or metered on-street parking to increase parking turnover and ensure availability of parking for business customers
- Pick up/drop off areas and very short-term parking (for example 5 to 15 minutes maximum) for parcel deliveries or TNC usage
- Clear wayfinding to longer-term parking
- On-street commercial loading areas (curbside or in center-turn lane for large vehicles)
- Mid-block speed humps, pinchpoints, or chicanes to reduce vehicle speeds
- Mid-block crosswalks to facilitate accessibility
- Expanded walking spaces and bike lanes
- Parklets, street cafes, and street furniture
- Enhanced landscaping and street trees
- Lower speed limits (20-25mph)

Example Neighborhood Main Streets include Bradford Street, Main Street, Marshall Street, Stambaugh Street, and Winslow Street.
Neighborhood Street

Local streets in residential neighborhoods provide transportation space for people to access their living space, recreational opportunities through play, walking, and biking; and offer public areas for neighbors to gather and interact with each other. Designed properly, a neighborhood street can become the meeting space for a group of residents. In addition, these streets should provide easy and safe access between residential and near-by commercial areas, schools, parks, and community centers. These streets typically have two travel lanes and discourage through traffic through traffic calming.

Design elements may include:

- Using lane striping and narrow lane widths to create the illusion of a more compact corridor, thereby reducing vehicle speeds, collision severity, and increasing safety for all users
- Green stormwater control, infiltration strips, bioswales, and street trees
- Mid-block speed humps, pinchpoints, or chicanes to reduce vehicle speeds
- Traffic circles at intersections to reduce vehicle speeds
- Stop control where appropriate
- Lower speed limits (15 to 25mph)
Industrial Street

Industrial corridors are designed to serve the needs of businesses building and creating products, which requires access by larger and heavier vehicles. Common vehicles often include vans, single unit, and smaller semi-trucks. As industrial areas tend to be spread out, workers often access them by private vehicle but accommodations should be made for those choosing to walk and bike while transit access comes along major corridors. Industrial Streets maintain medium speeds (30 to 35 mph) and have two to four travel lanes, limited bicycle facilities, and standard pedestrian facilities.

Design elements may include:

- Sharrows and speed humps to provide minimal biking facilities while managing speed for people driving
- Thicker pavement sections for increased resiliency against heavy, low-speed vehicles
- Speed limits are typically 30 to 35 mph to maintain vehicle throughput
- Sidewalks on one or both sides to accommodate people walking
- Truck aprons to manage vehicle speed and truck turns
- Layover space for trucks waiting to make deliveries
- Swales and other surface water treatments to reduce pollution and sediments in runoff
Intersection Design

Excess space in intersections encourages people driving to drive at speeds unsuitable to their surroundings. Utilizing excess space, whether by creating a more compact intersection or adding additional amenities, helps reduce vehicle speeds while improving access for all users.

Intersections provide traffic control for vehicular flow and serve as key points for people walking and biking to cross streets. In these places where pedestrians and cyclists cross the vehicle travel space, it is pertinent that those crossing the street are given appropriate priority and visibility to drivers.

Design elements may include:

- Protected intersections where appropriate
- Two aligned/directional curb ramps per crossing [eight total at a four-way intersection]
- Reduced radius curb to encourage slower turning speeds by people driving
- Closing slip lanes and removing “pork-chop” islands to lower speeds and increase visibility for people walking and biking
- Truck aprons to accommodate larger vehicle turns while encouraging drivers in smaller vehicles to treat the corner as a reduced radius curb. This typically takes the form of a 20-35° radius curb to allow for movements up to WB-50 with an added 15’ radius truck apron to slow passenger vehicles and smaller delivery trucks.
- A large corner radius (35’) should not be used to facilitate large trucks turning from right-hand lane to right-hand lane.
- Restricting right turns in places of high pedestrian volume
- Squaring up intersections to meet at 90-degree angles where possible to reduce crossing distances and vehicle speeds
- Reducing curb radius with paint and flexiposts in lieu of rebuilding curb lines
- Public plazas, temporary spaces, pavement removal, and large street furniture [bollards, planters, etc.] in locations with excess right-of-way at non-square intersections
- Leading pedestrian walk interval. Pedestrian crossings activate 2 seconds before vehicle lanes receive green to give people walking and biking a chance to cross with the full attention of turning drivers.
- Bike boxes and green pavement treatments to delineate space for people biking
- Reduced cycle times to reduce waiting time and frustration for all users
- Pavement treatments to reduce waiting time and frustration for all users
- Pavement treatments for people walking and biking to properly define and delineate spaces
- Raised crosswalks
Proposed Recommendations and Additions to Engineering Standards

The following design guides were used as reference materials: National Association of City Transportation Officials (NACTO) Urban Street Design Guide, NACTO Urban Bike Design Guide, Caltrans Highway Design Manual (HDM), Caltrans Standard Plans, and Caltrans Complete Streets as references to urban design practices.

Redwood City Current Standards

Redwood City’s current standards typically reflect those outlined in the Caltrans HDM, Manual on Uniform Traffic Control Devices (MUTCD), or Caltrans Standard Plans and Specifications. Many of the current standards should be updated to reflect more recent guidance that reflects best practices in urban environments.

Industry Standards and Best Practices

Roadway infrastructure in cities is evolving by placing more emphasis on walking, bicycling, transit use on streets, creating streets that are less dominated by cars and more balanced for multiple modes. However, already developed cities present restrictions to the improvement of roads. NACTO provides recommendations on how existing streets can be improved to better accommodate pedestrians and bicyclists, allowing each mode of transportation to flow more smoothly and safely through a corridor. By improving the infrastructure of all modes of transportation, Redwood City may benefit from safer, more inviting corridors for all users.

Industry standards and best practices for this study include designs for lane widths, bike lanes, sidewalk widths, design vehicle, grading, and intersections. Standards and practices for each of these are described below:

- **Lane Widths**: Automobile lane widths are often designed within the context of the surrounding land uses, with narrower width in urban, neighborhood, and collector streets to calm traffic and provide room for improved pedestrian, bicycle, and/or transit facilities.

- **Bike Lanes**: Bike lanes are often used on wider streets or those with medium to high traffic volumes. On routes with more bicycle and/or vehicle traffic, protected bike lanes are used, which have painted or physical separation between travel lanes and bike lanes. Green-painted lanes are also used to better define bike lanes, especially at intersections.

- **Sidewalk Widths**: Wider sidewalks in urban areas or adjacent to streets with wider curb-to-curb width are used to create a friendlier pedestrian environment pedestrian space with amenities, such as benches, trees, and lighting.

- **Design Vehicle**: Current practice defines the design vehicles as delivery truck sized vehicles, which provides more design flexibility.

- **Intersections**: Compact intersections are those that accommodate all modes of transportation, including pedestrians, vehicles, and cyclists. Some features to consider include striped crosswalks, bike boxes, curb extensions and bulb outs, and signal coordination.

Recommended updates to the current Design Guidelines as they relates to each of the street typologies are provided in Table 6.
Table 6: Recommended Design Guidelines by Street Typologies

<table>
<thead>
<tr>
<th></th>
<th>Boulevard</th>
<th>Neighborhood Main</th>
<th>Connector</th>
<th>Neighborhood</th>
<th>Industrial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane width</td>
<td>10-11’</td>
<td>10-11’</td>
<td>10-11’</td>
<td>22’</td>
<td>12’</td>
</tr>
<tr>
<td>Bicycle treatments</td>
<td>5’ min with 2’ min buffer</td>
<td>On street with traffic calming</td>
<td>Multi-use path or adjacent corridor/network</td>
<td>On street with traffic calming</td>
<td>Sharrows with traffic calming</td>
</tr>
<tr>
<td>Sidewalk width</td>
<td>8-12’</td>
<td>8-12’</td>
<td>6-10’</td>
<td>6-10’</td>
<td>6’</td>
</tr>
<tr>
<td>Design vehicle</td>
<td>BUS-40</td>
<td>SU-30 or DL-23</td>
<td>BUS-40 at major intersections</td>
<td>DL-23</td>
<td>Varies</td>
</tr>
<tr>
<td>Example Intersection treatments</td>
<td>Refuge islands, bike boxes, protected intersections</td>
<td>Curb bulbs, community-focused crosswalks, art</td>
<td>Refuge islands, high visibility crosswalks, reduced lane widths</td>
<td>Curb bulbs, traffic circles, raised crosswalks</td>
<td>Truck aprons, 4-way stops</td>
</tr>
</tbody>
</table>

Notes:
1. See intersection section for full list of treatments

Source: CDM Smith, 2017
Network Concept Maps

To ensure a balanced, multi-modal transportation network, the Redwood City General Plan organizes streets and other transportation facilities according to typologies that consider the context and prioritize different travel modes for each street. Together, the typologies provide a layered network of “complete streets” that will accommodate all types of local transportation modes.

These street network typologies should serve to guide future transportation studies and improvements, so that they consider relationships to surrounding land uses, appropriate travel speeds, and the need to accommodate multiple travel modes and various users. One of the goals of this plan is to “create a walking and bicycling-friendly community that provides a balanced, convenient, and safe transportation system.” To support this goal, RWCMoves will strive to implement the transportation network changes illustrated on the following pages.

Figure 18 shows the proposed street typologies network, which builds off those established in the General Plan. Figure 19 includes the proposed bicycle backbone network, which is in addition to the City’s existing Bikeway Plan. The backbone network recognizes the need to create a low-stress bicycle network that all users of all ages and abilities would be comfortable riding. This backbone network has the potential to create a cohesive, connected bicycle network for all residents to use.

Lastly, Figure 20 illustrates proposed truck routes in the City. These routes build off the network changes proposed as part of the street typologies and bicycle backbone network. The intent is to guide trucks over three tons to roadways appropriate for through travel and as close as possible to their destination.
Figure 18: Proposed Street Typologies Network

- Redwood City Limits
- Sphere of Influence
- Parks
- Schools
- Railroad

Proposed Street Network
- Neighborhood Main Street
- Industrial Street
- Neighborhood Street
- Connector Street
- Boulevard

Figure 18

Proposed Street Typologies Network
Figure 19: Proposed Bicycle Backbone Network

Existing Bicycle Facilities
- Class I Bicycle Path
- Class II Bicycle Lane (Enhanced)
- Class III Bicycle Route
- Class IV Cycle Track

Proposed Bicycle Facilities
- Class I Bicycle Path
- Class II Bicycle Lane (Enhanced)
- Class II Bicycle Lane (Pilot Project)
- Class III Bicycle Boulevard
- Class IV Cycle Track

Redwood City Limits
Parks
Sphere of Influence
Schools
Railroad

San Francisco Bay

Chapter Five: Where Do We Go From Here?
Figure 20: Proposed Truck Routes

Proposed Truck Routes
Ongoing Performance Monitoring

Evaluating the City’s success in achieving the vision and goals outlined in this document would be done through regular monitoring. Specifically, the City will establish a transportation system monitoring program for each of performance measures outlined in the previous chapter. Table 7 summarizes the strategies to evaluate each performance measure. Following the table is a detailed description of the potential monitoring strategies.

Improves Safety for All Travel Modes

Annually, the City should update its collision records with Statewide Integrated Traffic Records System (SWITRS) and Transportation Injury Mapping Systems (TIMS) collision data to monitor trends in:

- Total collisions
- Collisions involving pedestrians
- Collisions involving bicyclists
- Types of collisions
- Fatal and severe injury collisions
- Primary Collision Factors

Success will be measured through reduction in collision rates for each collision metric evaluated. In addition, creating collision heat-maps could be used to understand spatial trends in collisions throughout Redwood City.

Improves the City’s Overall Public Health and Minimizes Environmental Impacts

Redwood City can measure environmental impacts by tracking the average vehicle miles traveled (VMT) by City residents and employees. The California Governor’s Office of Planning and Research (OPR) will soon require projects to assess a project’s impact on the City’s VMT. VMT could be measured through the development of a citywide travel demand model or the development of an off-model VMT measurement tool. The City should evaluate VMT every two to three years to measure success of this performance measure.
Table 7: Redwood City Transportation Monitoring Program Strategy

<table>
<thead>
<tr>
<th>Category</th>
<th>Performance Measure</th>
<th>Monitoring Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Monitoring Data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Data Source</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Frequency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Level of Effort</td>
</tr>
<tr>
<td>Community, Health & Safety Improvements</td>
<td>Improves safety for all travel modes</td>
<td>Collision Data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SWITRS and TiMS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Annually</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Improves the City’s overall public health and minimizes environmental impacts</td>
<td>Vehicle Miles Traveled (VMT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Citywide Model or Off-model tool</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Every Two to three Years</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Promotes attractive, well-designed streets through placemaking, public art, and improved landscaping</td>
<td>Percent of completed projects that include placemaking, art, improved landscaping</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Project descriptions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Every Two to three Years</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>Transportation Infrastructure and Multimodal Network Improvements</td>
<td>Improves pedestrian facilities and network quality</td>
<td>Pedestrian Counts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Surveys</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Annually</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Improves bicycle facilities and network quality</td>
<td>Bicycle Counts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Surveys</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Annually</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Improves access to transit and enhances multimodal connectivity throughout the City</td>
<td>Transit Ridership</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Caltrain and SamTrans</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Annually</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Increases mode split for all non-automobile travel modes</td>
<td>Mode Split Data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Surveys</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Every Two to three Years</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Increases person throughput and proactively manages traffic congestion</td>
<td>Peak Period Travel Times on Major Corridors [Woodside Road, Middlefield Road, Jefferson/Farm Hill, Whipple]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Travel Time Surveys and volume counts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Annually</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medium</td>
</tr>
<tr>
<td>Equity Improvements</td>
<td>Accommodates all users, including disabled, low-income, the young and elderly with access to the transportation system as well as to jobs, services and other destinations</td>
<td>Map Evaluation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Project Location</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Every Two to three Years</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>Feasibility and Constructability</td>
<td>Project applies current design standards and is feasible and constructible</td>
<td>City Review</td>
</tr>
<tr>
<td></td>
<td></td>
<td>City Review</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ongoing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Project has a positive return on investment</td>
<td>Compare project use to original forecasts, compare costs to original estimate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>City</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Every Two to three Years</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medium</td>
</tr>
</tbody>
</table>

Promotes Attractive, Well-Designed Streets Through Placemaking, Public Art, and Improved Landscaping

Annually, the City should assess the percent of completed projects that had between three and five points for this performance measure. The goal would be to meet or exceed a set threshold normalized by project cost.

Improves Pedestrian Facilities & Network Quality

There are two ways in which the City should evaluate its pedestrian facilities and network quality. One is through annual pedestrian counts at set locations throughout the City. By defining key areas to monitor pedestrian activity, the City over time can monitor increase in pedestrian activity. The assumption is that increased pedestrian network quality will result in increased pedestrian activity.

Additionally, every two to three years, the City should update its Active+ maps and demonstrate a percent increase in network coverage that rates between medium and high pedestrian demand area. The premise is that as pedestrian network quality increases, so will the pedestrian demand.

Improves Bicycle Facilities & Network Quality

There are two ways in which the City should evaluate its bicycle facilities and network quality. One is through annual bicycle counts at set locations through the City. By defining key areas to monitor bicycle activity, the City over time can monitor increase in bicycle activity. The assumption is that increased bike network quality would result in increased bicycle activity.

Additionally, every two to three years, the City should update its Active+ maps and demonstrate a percent increase in network coverage that rates between medium and high bicycle demand area. The premise is that as bicycle network quality increases, so will the bicycle demand.

Improves Access to Transit and Enhances Multimodal Connectivity throughout the City

A key feature to evaluating access to transit is increases in transit ridership. Annually, the City should collect ridership data from Caltrain and SamTrans to report on ridership trends over time, and compare it to regional trends.

Increases Mode Split for All Non-Automobile Travel Modes

Mode split is an indicator of the presence and quality of bicycle, pedestrian, transit, and vehicular networks in Redwood City. Tracking travel behavior through overall volumes, ridership, and mode split in the City will be used to generate system-wide vehicle, bicycle, and pedestrian miles traveled over time. Mode split data can be collected through surveys at driveways, key gateways into/out of the City, and even residential surveys. The City should monitor success every two to three years.
Increases Person Throughput and Proactively Manages Traffic Congestion

Travel times on key corridors indicates if the City is effectively managing traffic congestion. Redwood City can also work towards increasing person throughput by tracking pedestrian, bicyclist, transit and vehicular throughput and delay along major corridors, including Woodside Road, Middlefield Road, Jefferson Avenue/Farm Hill Boulevard, Whipple Avenue).

Accommodates All Users, Including Disabled, Low-Income, the Young and Elderly with Access to the Transportation System

Annually, the City should assess the percent of completed projects that rank between three and five points for the Equity Score Map included in Appendix B. The goals would be to meet or exceed a set threshold normalized by project cost.

Project has a Positive Return on Investment

Projects are also evaluated based on if they will provide a positive return on investment. Under this measure, actual project usage and costs are compared to original forecasts and estimates.

Implementation Actions

The Redwood City Council, with support from City staff, would need to take the following actions to implement the RWCmoves vision along with its supporting goals, policies, programs, and projects:

• Adopt and environmentally clear the RWCmoves Citywide Transportation Plan
• Approve a General Plan Amendment to incorporate RWCmoves recommendations
• Update multimodal Transportation Impact Fee (TIF) program to capture unfunded Tier 1 projects, select Tier 2 projects and expected locally-funded portions of Signature Projects
• Seek local, regional and state grant funding to advance Tier 1 projects to the planning and design stages
• Update RWCmoves Project Priority List every two to three years to reflect additional project needs and priorities
• Monitor performance of transportation system and investment levels annually

These implementation actions will allow the RWCmoves Plan to respond to City’s current transportation needs and opportunities, while at the same time recognizing the changing nature of the transportation system. By doing so, the City will be well-positioned to achieve its vision of creating a multimodal, safe and accessible transportation network that provides the best travel experience possible for everyone in Redwood City.

Project Applies Current Design Standards and is Feasible and Constructible

In keeping with the state of the practice, all improvements should apply design standards that are current at the time of the implementation. Furthermore, the feasibility and constructability of a project are important criteria for Redwood City to consider, because if the project or program is infeasible or difficult to construct, then it will be difficult to implement. Project feasibility can be related to right-of-way constraints, jurisdictional responsibilities, costs, and other considerations.